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Analysis of a Cracked Thin Isotropic Plate Subjected
to Bending Moment by Using FEAM

Jai Hak Park* and Satya N. Atluri**
(Received April 8, 1999)

The Finite element alternating method is applied to obtain the stress intensity factors of

collinear multiple cracks in a thin isotropic plate subjected to bending moment. The necessary

analytical solutions are obtained by using the complex stress function method given by

Muskhelishvili and Savin. in order to verify the efficiency of the proposed method, several

example problems are solved and compared with the published results.
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1. Introduction

In order to assess the integrity of cracked struc­

tures, an accurate and effective stress analysis

methodology is necessary. For two dimensional

cracks under plane loading. it is veri tied that the

finite element alternating method (FEAM) is a

simple and efficient computational technique in

obtaining the stress intensity factors (Park et al.,

1992; Atluri. 1997) or in structural integrity

assessment (Singh et al., 1994; Park el al.. 1995).

However usual structural plates sustain bending

and twisting moments as well as plane loading, so

the finite element alternating method need to be

extended to consider such problems.

The problems of cracks in a thin plate subject

to bending or twisting moments have been consid­

ered based on the classical theory (Sih et a!',

1962; Isida, 1977; Merk ulov. 1975; Lin'kov and

Merkulov, 1975) or the Reissner theory (Mura­

kami, 1987; Reissner, 1944, 1945). As well be

known, the solutions obtained from the classical

theory can not satisfy the exact physical boundary

conditions on crack surfaces. On the other hand

the Reissner plate theory can satisfy the exact

boundary conditions but requires more complex
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solution procedure. Also the two theories give

different stress intensity factors. But as indicated

by Hui and Zehnder (1993), the mode I SIF

values obtained from one theory can be converted

into the S I F val ues of the other theory by using a

simple relationship.

Chen et a!' (1992, 19(3) have considered the

finite element alternating method in classical

bending problems. They used the Fourier trans­

formation technique in obtaining the necessary

analytical solutions. In this paper, we are using

other forms of analytical solutions obtained from

the complex stress function method given in

Muskhelishvili (l953) and Savin (1961) based

on the classical theory. With this method, the

Green functions are obtained lor the collinear

multiple cracks. The collinear multiple cracks

subjected to arbitrary bending moment distribu­

tion on the crack surfaces can be analyzed by

using the Green functions.

By inserting the obtained analytical solutions

into the usual finite element alternating algorith­

m, the finite element alternating method is devel­

oped for bending problems. With the proposed

method, the Sf F values of collinear multiple

cracks ina thin plate can be obtained very effec­

tively.

111 order to verify the efficiency of the method,

several example problems are solved and compar­

ed with the published results.
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2. Formulation

In the classical plate theory, the governing

equation for a thin isotropic plate under bending

or twisting loading is reduced to a biharmonic

equation. So the general sol ution can be written

in terms of the complex stress functions by apply­

ing the method of Muskhelishvili (1953; Savin,

1961):
Fig. 1 Collinear multiple cracks subjected to

bending and twisting moments at x c.

w(x, y) =Re[z1'(z) + ;c(z)]. (I)

here w is the lateral deflection and X' (z) = ¢'(z).

The bending and twisting moments per unit

length Mx . My, Mx; and the shear forces per unit

length Qx, Qy are related with the stress functions

as follows (Savin, (961):

Mx +My = -2D(l + J) [rf)(z) + rf)(z)].

My - Mx +2iMxy=2D(I- y} [zrf)'(z) -+- l{T(z)J
Qx-iQy=-4Drf)'(Z) (2)

where $(z) =1"(z), W(z) = (I/(z) and D=Ek'/

12(I - v2) is the flexural rigidity of the plate. And

E is the elastic modulus, h is thickness of a plate

and v is Poisson's ratio. Also the x and y direc­

. tion displacements, u and v are related with the

stress functions as follows:

Consider the problem of multiple cracks lying

on the x axis as shown in Fig. 1. Each crack is of

an arbitrary length. Arbitrarily distributed

moments can be applied on the crack surfaces.

And it is assumed that all moments are bounded

at infinity. This problem can be formulated as the

Hilbert problem by using the procedure given in

Musk helishvili (1953). A similar formulation can

be found in Merkulov (1975) and Lin'kov and

Merk ulov (1975). The general solutions of the

Hilbert problem can be obtained by using the

results given in Muskhelishvili (1953) such as:

<1) (z) = $0 (z) +~~;?-+ a

Q,,(z) =Q/,o(z) + ~i;? -a (6)

where

P+1Hnt = j ( s ) +C* (5)

where P' (s) = Qn (s). j' (5) = n (s) and C* is a

real integration constant P can be related with

the stress functio ns as P= 2 iD[ $ (a) - <1) (z) ].

here (] is the z coordinate.

Since only two boundary conditions can be

imposed in the classical' plate theory. the bound­

ary conditions can be expressed as follows for the

first fundamental problems:

Here the subscript n denotes the normal direction

and t denotes the tangental direction, and m(s)

and n (s) are the given boundary values at s

where s is the coordinate along the boundary.

The second condition of Eq. (4) can be expressed

as an integrated form as:

Q" (z) = - {(! -=-0)_[ i§(z) +zqr (2) -'- W(z) I (8)
JTV -

pU) = - 2D(;+ ,,) ([M)~ +M;~] - i[ (M;,

- P+) +(M;,,- p-)]) (9)

q (n = 2D(j+ y) [[A{'; - M;J - i[ (M;;.

-P+)-(i!1;y-P-)]J (10)

p"=C"zn+Czn-I+···+Cm (II)

(7)

( (2)

(/)Q(z) 1 (X(t)P(t)dt
27fiX (z) JL 1- z

+_1_. rq it) dl
2m)L f-z

Q (z)= .'_ rX(t)p(t)dt
00 2mX(z»)L f-z

__1_[ q (t) df
lTd L t r:s:

n __

X(z) =IT.;z=:r; ./z-Sj
j=l

and
(4)

Mn=m(s),

Qn+ iJA;lnt =n(s)­
CIS
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where r, is the x coordinate of the crack tip.

where K = K1 - iKz and Sj is the x coordinate of
the crack tip. For a lefthand side crack tip;

In Eqs. (6) and (II), a and Co are complex
constants and can be determined by examining

the stress and the behavior of the function f]) (z)

at infinity. Other coefficients C1, C2, "', C« can be
obtained from the condition of the single valued­
ness of displacements u and t), Let Jj be a

contour that surrounds the j-th crack. For the
single valuedness of displacements, the lefthand
side of Eq. (3) have to revert to its original value

when z describes the contour [j.

Once the stress functions are known, the stress
intensity factors and stress fields can be calcu­
lated. K can be obtained from the following
equations (Sih, 1962). For a righthand side crack
tip;

displacements u and v, which can be reduced to:

I S j t.n-1dt, 1.5
; t n-2dt

Cl rj X (t) T C2 r, X (t) +...

l S) dt -lS
} X (c) dt

+Cn r, X(t) =z r, xCifc=t
j= 1,2, "', n (17)

For j = k, the righthand side of Eq. (17) contains

(lit) singularity in the integrand. In order to

remove the difficulty in numerical integration, the
following relation is used as in Park et al. (1992):

[
S' X ( c) ~+ ... + (8JX(c) .su.

'I XU) c-t Jrj XU) c-[

+... +[5n
~(c) -f!L=0. (18)

rn X (t) C>: t

6,/2(Iv!' - iH*)
'iffl

+ iQn (rj) ]

After integrating each term in Eq. (17), we can
obtain n linear algebraic equations, from which

the coefficients C10 C2' ... , en can be calculated.
From Eqs. (13) and (14), the SIF at the tips of

multiple cracks can be obtained. For the crack tip
at x r r, :

( 13)

( 14)

I2j2'D(3+v) l' I~"'()
12 un , Z ss IV Z
11 '-Sj

12j2D(3+v) l' ~"'()
I z 1mv rj - Z IV Z
l z-rj

K

K=

(15)

where

And for the crack tip at X=Sj :

1 [ ){3
X 4 ,,'Sj-C

(21)

6/2(M*-iH*)
7r!l2

-Qn(Sj)]

where

X z= n Jrj-r",n Jrj-Sm, (20)
m:::;l.m~j m~I

n

Q" (z) = L; c-z":".
m;::;:1

" "X3=IT';c-r", IT ic-sm'
m=l m~l.m*j

n n
X4= IT ../sj-rm II ';Sj-Sm, (22)

m..::l m=l,m,*j

n "
X1= II Jc- r", II ";C-Sm

m=l.m~j m.:;t

By using the solutions of this problem as Green

functions, we can obtain the stress fields and SIF
s for collinear multiple cracks. each of arbitrary
length and each being subjected to arbitrary crack
surface tractions.

The solutions given in Eq. (16) is obtained
based on the assumption that the integration

UVJ*-iH*)
$(Z)=,Qb(Z) Isti Di3+lI) X(z)

x{X(C) -i-iIClzn-l+c,zn-2+ ... -i-Cnl}. (16)c-z' . ..

In order to obtain the coefficients in Eq, (16),
we consider the condition of single valuedness of

2.1 Multiple collinear cracks
Consider the problem where collinear multiple

cracks exist in an infinite isotropic plate along the

x axis. Each crack is of an arbitrary length. On the
upper and lower crack surfaces of the kth crack,
bending moments of magnitude M* and twisting

moments of magnitude H* are applied at x=c as
shown in Fig. I. And let the integration constant
in Eq. (5) be zero. Then from Eq. (9) and Eq.
(10), we can obtain:

(M*-iH*) ~
P(t) D(3+1J) oCt-c),

q (t) =0.

Here a(t - c) is the Dirac delta function. Sub­
stituting Eq. (15) into Eq. (6), the stress func­
tions become:
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constant C" in Eq. (5) equals to zero. If we

remove this assumption, C* must be determined
from the condition of single valuedness of dis­

placement ui. But when H' =0, we can verify that
C* =0. Since only Mode I loading, where H* =
0, is considered in this paper, solutions of Eq,

( 16) are enough to our purpose.

(27)

From Eq. (13) the resulting SIF's become:

2.2 A single crack
When there is one crack of length 2a instead of

multiple cracks, the solutions can be reduced
from the results of multiple collinear cracks. The

resulting stress functions become:

Here we use the assumption that the integration
constant C· in Eq. (5) equals to zero. From these

stress functions the SfF is expressed as:

The same result can be found in Merkulov (1975)
and van Vroonhoven (1994).

Comparing the two results of Eq. (24) and Eq,
(28), the same SfF values are obtained for the

bending moment ;11*, but different values for the
twisting moment H*. If we consider mixed mode
problems it must be determined which solution
must be used as Green functions. The solutions of
Eq. (23) can not satisfy the condition of single
valuedness of displacement lO contrary to Eq.

(27). But the stress field obtained from Eq. (27)
is not uniquely determined by stress intensity
factors but depends on the geometry also. In this
paper. however, since we consider only Mode I

loading, where H* =0. all the solutions satisfy the
single valuedness of displacement ic.

Also the stress functions become:

Applying the condition of single valuedness of
displacement w (Merkulov, 1975), we can obtain

c= -2B*i!c 2
- a2 / [ 7fD (3+v) a2J. And the

resulting stress functions become:

3. Finite Element Alternating Method

A general and detailed description of the finite
element alternating method can be found in
Atluri (1986, 1997). The basic steps in the finite

element alternating method for bending problems
are the same as the usual procedure in plane
problems. So several comments instead of detail
descriptions are given here.

The necessary analytical solutions for a cracked

infinite plate subjected to arbitrarily distributed
bending moments on crack surfaces are obtained
by using the solutions of Eq. (16) as the Green
functions. Here the numerical integration is car­

ried out by using the Gaussian type quadrature.

When there is 11rr type singularity in the inte­
grands, the suitable Gaussian type integration
formula given in Abramowith et al. (1972) is

used.
Since we consider only symmetric problems

only M.v moments are considered as residuals on
crack surfaces. At outer boundaries. the residual

(26)

K,-iKz=_I- (i+ c [ 6(M*-;' IH· ) ]. (24)
;rfaV ar:c II

Next consider the case when the integration
constant in Eq. (5) is not equal to zero. Then p
(t) and q (t) can be expressed as:

(M*-iH*) "
p(t) D(3+v) o(t-c) ...,--0,

a(t) =0. (25)
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Fig. 2 Normalized SIF values of collinear multiple
cracks. Here n is the number of cracks.

«r«

Fig. 3 Normalized SIF values of a center crack
subject to remote bending moment.

forces from shear stress rnz and moments I'lL,. kInt

are considered.
The used finite element formulation and the

finite element program are those given in Hinton

and Owen (1977). Eight nodes plate elements are

used and each node has three degree of freedoms

of displacement 10, X rotation and y rotation.

2W M"

2d

dAbs
2a 2a

2H

4. Sample Problems

In order to verify the efficiency of the proposed

method. several sample problems are solved.

First, in order to check the accuracy of the analyt­

ical solutions, we consider the problem of an
infinite plate with equal collinear multiple cracks

subjected to remote constant bending moment

Mo. Here we assume that the cracks are periodi­

cally distributed, the distance between the centers

of the adjacent cracks is 2d, and the length of

each crack is 2a. The results are given in Fig. :2

when the number of cracks are 2, 3, 5, and 9. Here

the SIF values are normalized with 6/Vlof{i/ h2
•

Comparing with the results of Isida (1977), we

can notice that the two values coincide very well.

Next consider the problem of a finite rectangu­

lar plate with a center crack of length 2a. Con­

stant bending moment Ala is applied on the

horizontal edge. The plate has the height of 2H,

the width of 2 Wand the thickness of h. It is

assumed that H is equal to W. The normalized

SIF values are given as a function of a/ Wand

compared with the results of Chen et al, (1992) in

M"
Fig. 4 Two symmetric cracks in a thin plate.
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Fig.5 Normalized SIF values of two cracks in a
thin plate shown in Fig. 4.

Fig. 3. It can be shown that the two values

coincide well.
Consider another problem of a finite rectangu­

lar plate with symmetrically located two cracks as

shown in Fig. 4. In order to compare with the
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results of Chen et aL (1992) the same dimensions

are used such as H=3 ~V, w= 10/1 and a--h.
The normalized SIF values are given as functions

of d / a in Fig, 5. The results show good agree­

ment with the results in Chen et al, (1992),

5. Results

The finite element alternating method IS

extended to consider collinear multiple cracks in

a finite thin plate subjected to bending moments.

It is shown that the proposed method can be used

as an effective method in obtaining the stress

intensity factors.
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